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In  a barotropic fluid, a free turbulent flow induces a fluctuating potential flow 
which is determined by the instantaneous flow near the edge of the turbulent 
flow. If the surrounding fluid is stably stratified, internal wave-motions are 
possible and, in general, wave-energy accumulates until it is sufficient to modify 
the turbulent flow. Here the growth of wave-motion from rest is examined with 
particular reference to the atmospheric problem of wave excitation by the surface 
boundary layer. Wind shear is supposed negligible outside the turbulent flow 
and the disturbances from the boundary layer are assumed to travel with a 
convection velocity V relative to the upper air. For times large compared with 
{ -g/p(dp/dz))-) ( p  is the potential density), most of the wave-energy resides in 
components of phase-velocity near the convection velocity. For a model atmo- 
sphere with increased stability above a tropopause, this resonance mechanism 
leads to the formation of wave-groups with crests at right-angles to the convection 
velocity and wavelengths near 2nJ" - g/p(dp/dz)]-*. Using likely values for the 
surface disturbances, wave-amplitudes of order 100 m can develop within several 
hours of the initiation of the boundary layer but sufficient amplitude to produce 
overturning or breaking is unlikely within a reasonable time. 

1. Introduction 
Observations of clear-air turbulence and of shadow bands cast by starlight 

show that turbulent mixing is frequently intense near the tropopause. While some 
of the observed turbulence is associated with the presence of jet-streams, some is 
not and may arise from breaking of internal waves propagating in the atmo- 
sphere. One possible source of energy for internal waves is the boundary layer on 
the earth's surface and the main purpose of this paper is to find the probable 
magnitudes and characteristics of wave-motions excited by a turbulent bound- 
ary layer at the bottom of a stably stratified atmosphere. The results may have an 
application to the ocean. 

The problem of the induced motion outside a free turbulent flow has been 
treated by Phillips (1955) for a barotropic fluid. The induced flow in a barotropic 
fluid is a potential flow and is determined by the instantaneous turbulent motion. 
Its energy is effectively part of the turbulent energy and its influence on the 
turbulent motion could be described as the addition of virtual mass to the 
eddies. If the surrounding fluid is stably stratified, internal wave-motions are 
possible and the turbulent flow can lose energy by radiation. A statistically 
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steady state is possible if the turbulent flow is horizontally homogeneous and 
time-independent and can take two extreme forms. If energy dissipation 
outside the boundary layer is negligible, the wave-motion will grow in intensity 
until it transfers energy to the boundary layer at the same rate as the layer 
radiates. On the other hand, if dissipation outside the layer is sufficient to absorb 
all the radiated energy while the wave-motion is comparatively weak, the motion 
in the boundary layer will be nearly independent of the waves and the equilibrium 
wave-intensity depends on a balance between the rate of radiation and the loss 
by frictional forces. For large values of the wave Reynolds number, the wave- 
motions are nearly the same as in an inviscid fluid and the rate of wave-growth 
in the inviscid case will equal the rate of radiation in the dissipative case. The 
basic problem is thus the growth of wave-motion in a stably-stratified fluid, 
initially wave-free but subjected to specified displacements at its lower boundary. 

2. Free and forced wave-motions 
If the boundary layer is thin compared with the depth of the atmosphere, 

its effect on the atmosphere as a whole can be approximated by the effect of the 
vertical displacements which exist just outside the layer, and these displace- 
ments may be considered to occur at ground level. The instantaneous pattern 
of the surface displacement can be represented as the superposition of Fourier 
components, and the time-variation is nearly equivalent to having a pattern 
that is convected with uniform velocity but undergoes considerable change in 
times comparable with typical time-scales of the turbulent motion. The problem 
reduces to that of discovering the response of an initially wave-free atmosphere 
to a suddenly imposed, sinusoidal surface-displacement travelling with the 
convection velocity, and then of superimposing the responses for different 
phases and wave-numbers. For the comparatively small wave-numbers that are 
likely to excite internal waves, the convection velocity is nearly independent of 
wave-number. 

Consider an atmosphe’re without wind-shear and with a continuous distribu- 
tion of potential density p defined by 

B ( z ) = - Y *  and p = O  for z >  h + H .  
P dz 

The top to  the atmosphere at  z = h + H (the total depth is written in this way to 
simplify later equations for a two-layer model) reflects the finite mass per unit 
area of the atmosphere and does not impose a characteristic length-scale on the 
wave-motions to be considered. A travelling wave with small vertical displace- 
ment, 

satisfies the inviscid equations of motion (Lamb 1932) if @(z) satisfies 

= $(z)exp{i(k.r-kct)), 

Here k is the horizontal wave-number vector (I kl = L), r is the horizontal position 
vector, c is the phase velocity, and the frame of reference is at rest with respect to 
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the atmosphere. The boundary condition at the upper free surface is that 
$(h + H )  = c2/g $'(h + H )  (Lamb 1932), which approximates to $(h + H )  = 0, 
the condition for a rigid boundary, if the phase velocities are small compared with 
[g(h + H)]*, which is nearly the velocity of sound in an analogous real atmosphere. 
The lower boundary condition for free waves is that $ ( O )  = 0, but a ground dis- 
turbance with displacement 

Cl = a, exp {i(k. r - kct)} 

produces a forced wave with $ satisfying equation (2.1), the upper boundary 
condition, and the lower boundary condition $ ( O )  = a,. 

The general motion for a surface disturbance of a single wave-number k 
moving with the convection velocity V relative to the atmosphere is a linear 
combination of all the free waves of wave-number k and the forced wave with the 
appropriate surface displacement and phase-velocity . For a motion started from 
rest at zero time by the sudden appearance of the surface displacement, the 
particle displacements are 

6 = a, exp (ik . r} sinh k(h + H - z)/sinh k(h + H ) ,  

the same as for irrotational' flow. For large values of k(h + H ) ,  the displacements 
are very nearly g = a, exp { - kz) exp {ik . r}. 

At finite times, the phases of the free waves have changed with respect to the 
forced wave and the displacement pattern is no longer irrotational. The displace- 
ments at heights for which exp { - /cz> is very small arise from these phase changes. 

$l(z) exp {i(k. r - k. Vt) } ,  

Writing the forced wave as 

and the free waves as 
ai$&) exp{i(k. r - kcit)}, 

i 

the initial condition is satisfied if 

a, exp { - q = $1(4 + z a, $&). (2.2) 
i 

The subscript i refers to the various wave-modes with horizontal wave-number k. 
From the differential equation for $(z) and the boundary conditions, it is easily 
shown that 

P(z)  @&) $ j (z )dz  = 0 unless i = j 

It follows that 

16-2 
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giving the amplitudes of the free waves in terms of the surface displacement. 
At time t, the spatial amplitude of the disturbance at height z is 

c(z,  t )  = $l(z) exp { - ik. Vt} + ai $&) exp { - ikcit} 
i 

= -a, exp { - kz} exp { - ik. Vt} 

+ 2i 2 ai $ i ( x )  sin [#t( V cos S - ci)] exp { - @kt(ci + V cos S)), (2.4) 

where 0 is the angle between the wave-number k and the convection velocity V. 
Except very near the ground, the motion is nearly the sum of ‘free’ waves 
travelling with the modified phase velocities, +(ci + V cos S), and beating with 
frequencies k(ci - VcosO). It is clear from equation (2.3) that the most strongly 
excited modes are those for which k(ci - V cos 6) is small; these beat slowly and 
reach their maximum amplitude only after a considerable time. The situation 
is similar to that discussed by Phillips (1957) in his theory of surface waves 
generated by turbulent pressure fluctuations. 

If the variation of the stability parameter p is small within a wavelength of 
the surface, p(z) $&) exp { - kz} may be approximated by 

i 

where p1 is the value of p near z = 0, and equation (2.3) for the wave-amplitudes 

So far i t  has been assumed that the ground disturbance preserves its complex 
amplitude, which is likely to be true only for short intervals of time. If the 
amplitude varies with time, the displacement pattern can be expressed as the 
sum of the patterns caused by successive short intervals of ground disturbance, 
each with the current amplitude. The solution above refers to a disturbance zero 
for t < 0 and equal to a, exp {i(k. r - kVt cos O)} for t > 0. By superimposing a 
second disturbance which is zero for t < 6t and -a, exp{i(k.r -kVtcosO)} for 
t > &, we obtain the displacement pattern caused by a short interval of dis- 
turbance. For t > &, the two forced waves have opposite signs and the pattern 
consists of the two sets of free waves. For each mode, the amplitudes have the 
same magnitude and the relative phase differs from 7~ by the phase advance 
relative to the disturbance undergone by the first wave in the interval 68. That 
is, the resultant amplitude of one mode for t > 6t is 

ai[ 1 - exp {ikSt(c, - V cos S)}] M - ikai(ci - V COB 8)  6t 

for small at, with ai given by equation (2.5). In  any small interval of time, internal 
waves with mode amplitudes determined by the current value of a, are added 
to the wave-system and travel relative to the convection velocity a t  a speed 
Aci = ci - V cos 6. It follows that the total amplitude after a finite time t is 

5 = - ik $ i ( ~ )  Aci k) a,(t’) exp {ikAci(t - t’)} dt’ 
i 

+a,(t)e-kzexp (-ikVtcosS), (2.6) 
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the last term representing the effect of the instantaneous surface displacement. 
Introducing ensemble averages to find the expected motion after a finite time, 

(bib:) = 2k2Ac: 2 (aoa,*) (t -7) R(7) cos (kAci7) d7, 
(:o)2 Sd 

where bi is the amplitude of the ith mode, and 

is the auto-correlation function for disturbance components of wave-number k 
in a co-ordinate system moving with the convection velocity. For elapsed times 
long compared with the time scale, 

(bib:) = 2k2Ac: 4 (aoa:)t R(7) cos (kAci7) d7. 
C O l 2  /ow 

The integral approaches 70 for small values of 
kAci 70 becomes large. Since 

and decreases to zero as 

does not vary rapidly with ci, free waves are excited with appreciable amplitudes 
only if kAci70 is not large and with mode amplitudes about 

The behaviour of the auto-correlation function may be represented roughly by 
supposing that R(7) = 1 for 171 < 70 and is zero for larger values of 1.1. Then the 
expected wave-motion for large values of t / ~ ~ i s  statistically similar to the motion 
at  t = 70 calculated on the basis of no change in the amplitude or phase of the 
ground displacement but with energy increased by a factor of t/70. 

For ground displacements, described by a power spectrum F(k), the power 
spectrum of vertical displacements at height z and time t after the start is 

where 

and it has been assumed that the time-scale 70 is the same for all wave-numbers. 

3. Waves in a model atmosphere 
We now consider waves excited in the density distribution defined by 

P(z )  =PI  for 0 < z < h 

P(x) = P2 for h < z < h + H ,  
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with 8, less than p,. Approximations will be made that refer to an ideal atmo- 
sphere with a lapse rate of 7 deg km-1 up to a tropopause, represented by para- 
meters with the orders of magnitude, P1 = 2 x sec-,, 
h = H = 8 km. Examination of equation (2.1) and the boundary conditions for 
$(z) shows that possible free waves are of two kinds: 

~ e c - ~ ,  Pz = 5 x 

(i) 'Exponential' waves with phase velocities between j3tk-l and 
(ii) ' Sinusoidal' waves with phase velocities less than &k-l. 
The exponential waves have amplitude distributions 

$(z)  = sin[k,(z-h-H)] for h < z < h + H , )  

k-l. 

sin k, H 
sinh k; h 

- --- sinkiz for 0 < z < h, 

I where k;2 = k2-P1c-2, ki = P , C - ~ -  k2 

tanh k; h tan k ,  H 
and + = 0. 

If kH is large, at z = h 
k; k, 

- 
Ai $i = - 3 sin2 k, H cosech k; h (3.3) 

P2H 

very nearly. A boundary layer of thickness small compared with h is likely to 
excite only the modes with large values of kh and, in general, k; h is also large and 
A,  $, is extremely small. It follows that exponential modes are not excited with 
appreciable amplitude by the kind of disturbances expected in a boundary 
layer. 

Sinusoidal modes have amplitude distributions 

$ ( z )  = sink,(z-h-H) for h < z < h+H) , ' )  

sink, H 
sin k, h 

- - -___ sink,z for 0 < z < h, (3.4) 

which satisfies equation (2.1) and the various boundary conditions provided 

k: = pic-, - k2, ki = / I , C - ~  - k2)  

1 1 (3.5) 

k, k2 
and 

For x < h, 

-tan klh+- tan k,H = 0. 

Ai$i = - 1 +- "- '' cos 2k, H sin k,z. ( 3 4  1 
The maximum possible value of k:/ki is, from (3.5), /31/p2, which is not large, and 
we may omit the second term in the bracket and use without serious error the 
' average ' value, 

A.i$.i = - IC' + k' sin k,z. 
k,(P,h+B,H) 

(3.7) 

Substituting in equation (2.9), the spatial spectrum of the displacements at 
time t is (omitting exponential modes) 
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where c,, k,, k2 refer to the 8th mode of sinusoidal form with wave-number k. 
The characteristic values for the different modes can be located roughly by 
noticing that particular solutions of the third of the conditions (3.5) are 

and 

where p ,  q are integers. Ignoring the fine detail, the third condition may be 
replaced by 

k ,h+k2H = rn, (3.9) 

where r is a positive integer. The first two conditions lead to 

and, if k:/ki is small, it  is nearly true that 

(3.10) 
n 

k,  = (s+u,)-  (0  < 01, < 1). 
h 

It turns out that, at heights comparable with h, the low-order modes contribute 
most to the wave-motion and (3.10) provides an adequate description of the dis- 
tribution of values of k,. Since 

(s+a)2n2 p, 
h2 CS 

= - k2, k2, = 

possible values of c, are distributed densely just below &k, corresponding with 
small values of k, and s. 

Returning to the spectrum equation (3.8), it will be seen that the variation of 
the ‘resonance factor ’, sin (~JCr,Ac,)/&kAc,, with mode number s is much less 
than the variation of the factor sin (k ,z) /k ,  if d~~ < k2zh. For values of k likely 
to occur in the boundary layer, i.e. over cm-l, the condition is satisfied near 
x = h for time-scales less than 5000 sec. Substantial changes in the displacement 
pattern at the surface would be expected in times of order 500sec. Then the 
sum over all modes can be approximated by neglecting the variation with mode 
order of terms other than sin k,z/k,  and replacing them by their values at k, = 0. 
For this to be possible, modes of fairly high order must exist with phase velo- 
cities near &k. The necessary condition is that &h/nrc, should be large, true if 
kh is large. Substituting values for k, = 0, 

we find 
P1(P2 - /31)2 

(@ih+  P2H)2 (& + kV cos S)2 [ i~,(& - kV cos 8)  
k2 V 2  cos2 8 sin {$~,(/3! - k V cos S)} ~ _ _ _ _ _  G(k) = 

X [ g sin (s +a) nz/hI2 z2t7, F( k) . (3.1 1)  
,=o (8 + 01) nx/h 
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The series cannot be summed without details of modes but the major contribu- 
tion comes from terms with s less than +h/z. For small values of zlh, there are 
many such terms, each nearly one, and the series is not significantly different from 

For values of z/h near one, the major contribution is likely to come from the first 
term, sin (aonz/h)/(aonz/h), and to depend on the unspecified fraction a,. 
That the remaining terms add little to the total for z/h = 1 can be seen from the 
following argument. If the various a's were distributed at random in the interval 
(0, l), the expected value for the square of the sum would be 

and 

Now 

is zero if all the a's are zero and equal to 0.057 in the most favourable arrange- 
ment of them all equal to +. In  general, it  seems likely that the square of the sum 
for z/h = 1 exceeds (sinaon/aon)2 by about 0.03, and may vary between 0.03 
and 1.03 depending on the phase fraction ao. As an average over various con- 
ditions, we may take 0.5, and assume for intermediate values of z/h 

3D sin[(s+a)nx/h] ) =4-$(1+;). 1 h2 
(ZO (s+a)nz/h 

Inserting this value in (3.11) 

The basic features of the wave-spectrum are now clear. Below the 'tropo- 
pause' at z = h, the spectral intensity increases somewhat with height and is 
proportional to the time elapsed since the initiation of the surface disturbance. 
Wave-energy is concentrated in wave-numbers for which, nearly, k cos 0 = &/ V, 
i.e. the component of the wave-number in the direction of the convection velo- 
city is nearly /$/V: The degree of concentration is measured by the ratio 4&,,, 
which is approximately the number of crests in a typical wave-group. The lateral 
extent and pattern of the crests depend on the spectrum function of the ground 
displacement. 

4. Calculation of wave intensities 
The ground displacements whose power spectrum is P(k) are the consequences 

of vertical velocities near the edge of the boundary layer with power spectrum 
f(k). Since all the Fourier components of interest have the same convection 
velocity V ,  

f(k) = jkBV2cos20- (7) d2R(7) ] F ( k ) ,  
7=0 



Excitation of internal waves 249 

where R(7) is the auto-correlation function defined in $ 2 .  For an isotropic dis- 
tribution of vertical velocities satisfying the continuity equation (see Batchelor 
1953) 

and now the expression for the wave spectrum (3.12) can be partly integrated in 
polar co-ordinates to give the mean square displacement at time t, and height z 

f (k)  = k 2 $ w ) ,  ( 4 4  

where T i 2  = - [ d 2 R ( ~ ) / d ~ 2 ] , = 0 .  It has been asumed that P17k is so large that only 
the variation of the resonance factor 

sin {+T,& - k V cos 0)) -1 
need be considered in performing the integration with respect to k. A plausible 
form for the spectrum function is 

16 4 

where wg is the root-mean-square velocity fluctuation and Lo is the integral 
scale of the fluctuations, both just outside the turbulent layer. The rapid cut-off 
of the spectrum at large wave-numbers is reasonable in view of the absence of 
true turbulence. For the spectrum (4.4), 

#(k) = n3 wi L! exp ( - 7z P L ~ )  , (4.4) 

where X 2  = 8P1 Li/(nV2).  For fixed wo, the maximum possible value of (y2) is 

(4.6) 
attained for 

The efficiency of wave-generation falls off rapidly with increasing p1 Lf/ V2,  i.e. 
with smaller convection velocities. For small values of ,tllB,L;/ V 2  (large convection 

p1 Li/ v2 = in( 1 + 4 2 ) .  

velocities), 
(4.7) 

The waves selected by the resonance mechanism have frequencies near & 
and the mean square of the vertical velocity is simply p1(C2). 

If the wave amplitude is sufficiently large, non-linear effects may cause 
overturning and production of regions of unstable stratification. The condition 
for overturning is that aiJ8.z < - 1 and the quantity ((aLJ’/az)2) calculated from the 
linear theory must be large if overturning is likely. Making the necessary modi- 
fications to the previous argument, 

t 

70 
x - F ( k ) d k  for z < h. (4.8) 
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Near z = h, the contributions from the various modes are not closely correlated 
and the square of the sum of the mode amplitudes can be replaced by the sum of 
their squares. For a dense distribution of modes, summation can be replaced by 
integration over all values of s and, for sharp resonance excitation with rapid 
cut-off outside the pass band, the integration need consider only the variation 
of the resonance factor. Then 

k2,+ki kc,3VcosB ((2)') = / ~ ~ F ( k ) / o m  ( P 1 h + P 2 H )  (c,+ VcosO) 

Since k, = (s + a) n-/h and E2 + k4 = /31c;2, approximately 

(4.10) 
sin [*ET,,(C,- J' cos 8)] kh 

gkTO(C, - v uos e)  p ~ T o ( p ~  - k v cos e) )  and 

if /38 > E V cose and is zero if Pf < E V cose. Most of the contributions to 
comes from wave-modes with phase velocities near Bcos8 so that 

k: + k?i = (P2 -PI)/( V cos 0)'. Using these approximations, integration with 
respect to k leads to 

With the spectrum function (4.4), the integration can be completed with 
sufficient accuracy to give 

(g)') = 0.406 ( (P'-P1) h)' [ (877)) X4 + 8x1 exp { - 4x2). (4.12) 
(27.f)) &L0h Plh+P'H 

For given wo and Lo, the maximum value is 

(4.13) 

attained for P1 Lt/ 1.'' = in- very nearly, and, for large convection velocities (small 

(4.14) ((2)') = Y P h  (P,h+a,H) * 

PlL,2/ V'), 0.812wtt (P2-P1)h ' 

At this stage, it may be useful to recall the assumptions made in obtaining the 
expressions for wave amplitudes. First, it is assumed that many wave-modes 
exist with phase-velocitiesnear Bf/k, that is to say, the mode-order, nearly equal 
to k,h/n by equation (3. lo), can be large for values of k2, which are small compared 
with k2 (see the relations of (3.5)). The condition may be written 

7 ~ 2  < k; h2 < k2h2. 
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Secondly, the variation of k2 with mode-order is assumed to be small. From the 
relations (3.51, 

and so k, is nearly constant if 

Thirdly, i t  is assumed that resonance excitation is the dominant mechanism so 
that c, w V cos 8 and kV cos 8 w &. All these assumptions are justified if 

(i) wl!!L!f is two orders of magnitude greater than one, and if 
p 2  7Pv2 

(ii) &T$sfairlylarge. For the atmosphere, witha, w 2 x 10-4sec-2,/3,/,51 w 2.5, 
h x 8 km, the first condition is satisfied if the convection velocity V is an order of 
magnitude less than 30 m sec-l and the second if ro, the persistence time of eddy 
patterns in the boundary layer, is considerablylarger than/3it = 70 sec. Measure- 
ments in the laboratory indicate that the convection velocity of the large-scale 
pressure field at the surface relative to the free stream is roughly five times the 
friction velocity (e.g. Willmarth & Wooldridge 1962). In  the atmosphere, the 
change from neutral stability at low heights to strong stability near the edge of 
the boundary layer may increase the ratio of convection velocity to friction 
velocity but the convection velocity is unlikely to exceed several metres per 
second. The life of a large eddy is expected to be of order the length-scale divided 
by the typical velocity fluctuation. In  adiabatic conditions, we may estimate 
Lo = 300 m and wo = 0.3 m sec-1 leading to r,, w 1000 sec. With strong convec- 
tion, the time may be less. It appears that the analysis should give a reasonably 
accurate estimate of the rate of growth of internal waves in the absence of strong 
velocity gradients outside the boundary layer. 

As a numerical example, suppose the root-mean-square vertical velocity to 
be 0-3 m sec-l. Substituting in equation (4.6), we find 

[& = 0.30t( 1 + z/h) (t in seconds, crn in metres), 

assuming &rl w &ro to be large. In  the most favourable circumstances, for 
plL;/ V 2  near -&n(l+ 29) = 0.95, wave displacements of order lOOm could appear 
after 3 h. With an integral scale of 300 M, the optimum convection velocity is 
4 m sec-l. Substituting in equation (4.13), the maximum value of 

((2)') is 9.1 x lO-7t (tin seconds), 

and occasional values of a[/:laz near - 1 are likely to occur only after periods of 
excitation so long that the assumption of steady conditions in the atmosphere 
is highly implausible. 

5. Discussion 
The analysis of the second section applies to the generation of internal waves 

in a stably stratified fluid which is initially at rest by travelling disturbances of 
the kind found in a boundary layer. In  general, most of the wave-energy appears 
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in modes which satisfy a resonance condition that their phase velocity is nearly 
equal to the convection velocity of the disturbances in the boundary layer. If 
the fluid is in two layers, each of constant density gradient with the more stable 
on top, the generated waves take the form of groups with crests at right-angles 
to the vector difference between the convection velocity of the disturbances and 
the general velocity of the fluid. The wavelength in the group is proportional to 
the vector difference and the lateral extent and appearance of the groups de- 
pends on the ratio of the wavelength to the length-scale of the disturbances, 
or V/(&Lo). If the ratio is large, consideration of the angle integral in equation 
(4.3) shows that wave-energy is concentrated in wave-numbers with com- 
ponents b$/ V in the direction of V and roughly & L;1 at right-angles. The effect 
is that the wave-groups have a spanwise modulation of amplitude, typically a 
reversal of sign over a distance of order Lo. If the ratio is small, the groups are 
simple. The vertical distribution of wave-amplitude is not known with any 
certainty. The reason is that the low-order modes which contribute most to the 
amplitude at  considerable heights may cause resonance effects in the upper layer 
which depend critically on the assumed depth. Arguments given in $ 3  suggest 
that the average distribution over the small range of depths sufficient to provide 
all degrees of resonance is one which increases moderately from the surface to the 
layer junction. 

If numerical values appropriate to the atmosphere are substituted in the 
equation for the growth of waves, vertical displacements of order lOOm are 
predicted after several hours, and it seems possible that some occurrences of 
travelling wave-clouds may arise in this way. On the other hand, it is most 
unlikely that the wave-motion would ever become sufficiently intense to produce 
patches of clear-air turbulence by overturning. A serious restriction on the atmo- 
spheric application is that there should be no appreciable shear outside the 
boundary layer, but considerable difficulties arise in the presence of wind-shear. 
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